PLOTTING SIMPLE QUADRATIC GRAPHS

Answer all of these questions. Remember to show your working out in all questions.

MAIN QUESTIONS

1.
$$y$$
 Parabola with vertex at $= \begin{pmatrix} 0, 0 \end{pmatrix}$

2.
$$y$$
= Parabola with vertex at
= $(0, 2)$

3.
$$y$$
 Parabola with vertex at $= \begin{pmatrix} 0, -3 \end{pmatrix}$

5.
$$y$$
Parabola with vertex at
$$= (0, -1)$$
 x^2

7.
$$y$$
 Parabola with vertex at $= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

2x

9.
$$y$$
 Parabola with vertex at $=$ $(2, -4)$

-4x X

11. y Parabola with vertex at

= (-1.5, -2.25)

+ 3x

12. y Parabola with vertex at = (2.5, -6.25)

5x

13. y Parabola with vertex at = (-3.5, -12.25)

x + 7x 14. y Parabola with vertex at = (3, -9)

6x

15. y Parabola with vertex at = (-4.5, -20.25)

x² | (-4.5, -20) + 9x

16. y = Parabola with vertex at $x^2 +$ 10x

17. y Parabola with vertex at = (3.5, -12.25)

x² -7x 18. $y = \begin{cases} y = \\ x^2 \\ + \end{cases}$ Parabola with vertex at (-5.5, -30.25)

19. y Parabola with vertex at = (4, -16)

20. y = Parabola with vertex at x^2 (-6, -36) + 12x

-8x

21.
$$y$$
 Parabola with vertex at $= (4.5, -20.25)$

9x

22.

23.
$$y =$$
 Parabola with vertex at $x^2 -$ $(5, -25)$

24.
$$y =$$
 Parabola with vertex at x^2 $(-7, -49)$

25.
$$y =$$
 Parabola with vertex at $x^2 -$ $(5.5, -30.25)$

26.
$$y =$$
 Parabola with vertex at (-7.5, -56.25) + 15x

27.
$$y =$$
 Parabola with vertex at $x^2 -$ $(6, -36)$

28.
$$y =$$
 Parabola with vertex at $(-8, -64)$ + $16x$

29.
$$y =$$
 Parabola with vertex at $x^2 -$ $(6.5, -42.25)$

30.
$$y =$$
 Parabola with vertex at $(-8.5, -72.25)$

MASTER QUESTIONS

- A ball is thrown upwards and its M1. height h in metres after t seconds is given by $h = -t^2 + 6t$. Find the maximum height reached by the ball.
- The maximum height is 9 metres
- The area of a square is given by $A = x^2$, The length of a side is 8 cm M2. where x is the length of a side. If the area is 64 cm², find the length of a side.

- M3. A parabola has the equation $y = x^2 4x + 3$. The vertex is at (2, -1) Find the coordinates of its vertex.
- M4. The profit P in pounds from selling x items is given by P = -x² + 10x. Find the number of items that must be sold to maximise profit.
- M5. A garden is in the shape of a rectangle with one side against a wall. The area is given by $A = -x^2 + 10x$, where x is the length of the side perpendicular to the wall. Find the maximum possible area.
- M6. The height h in metres of a rocket t seconds after launch is given by h = -5t² + 50t. Find the time when the rocket reaches its maximum

height.

- M7. A quadratic graph has its vertex at (3, -4) and passes through the point (1, 0). Find its equation in the form $y = x^2 + bx + c$.
 - The equation is $y = x^2 6x + 5$
- M8. The cost C in pounds of producing x items is given by $C = x^2 20x + 200$. Find the number of items that minimises the cost.
- 10 items minimise the cost

- M9. A bridge's arch is modelled by the equation $y = -x^2 + 9$, where y is the height in metres and x is the horizontal distance in metres from the centre. Find the maximum height of the arch.
- The maximum height of the arch is 9 metres

A farmer M10. has 100 metres of fencing to enclose a rectangular area. If one side is x metres, show that the area A is given by $\mathbf{A} = -\mathbf{x}^2 +$ 50x. Find the maximum

area that