PLOTTING QUADRATIC EQUATIONS

Answer all of these questions. Remember to show your working out in all questions.

MAIN QUESTIONS

1.	Parabola opening upwards with vertex at (0, 0)	2. y = - x ²	Parabola opening downwards with vertex at (0, 0)
3.	Parabola opening upwards with vertex at (0, 2) + 2	4.	Parabola opening upwards with vertex at (0, -3)
5.	y Parabola opening upwards with vertex at (1, (x 0) -1)2	6. y = (x + 2)	Parabola opening upwards with vertex at (-2, 0)
7.	y Parabola opening (x 2) 1) ² Parabola opening upwards with vertex at (1, 2)	8. y = (x + 3)	(-0, -1)

- 4

9.	y = Parabola opening upwards with vertex at (0, 0), steeper	10.	y = Parabola opening downwards with vertex at (0, 0), steeper
11.	$y = 0.5x^2$ Parabola opening upwards with vertex at $(0, 0)$, wider	12.	y = -0.25x ² Parabola opening downwards with vertex at (0, 0), wider
13.	Parabola opening upwards with vertex at (1, 3), steeper 1) ² + 3	14.	y = -0.5(x + 2) ² -1 Parabola opening downwards with vertex at (-2, -1), wider
15.	Parabola opening upwards with vertex at (-2, 0) + 4x + 4	16.	Parabola opening upwards with vertex at (3, 0) 6x + 9
17.	Parabola opening upwards with vertex at (-1, 4) + 2x + 5	18.	y Parabola opening upwards with vertex at (2, -3) 4x + 1

19.	Parabola opening downwards with vertex at (1, 0) x² + 2x - 1	20.	y Parabola opening downwards with vertex at (-2, 0) x ² - 4x - 4
21.	y Parabola opening upwards with vertex at (-2, -2), steeper + 8x + 6	22.	y = Parabola opening downwards with vertex at (2, 3), steeper 12x - 9
23.	$y = 0.5x^{2}$ Parabola opening upwards with vertex at $(2, 0)$, wider	24.	y = -0.25x ² + x - 1 Parabola opening downwards with vertex at (2, -0.5), wider
25.	Parabola opening upwards with vertex at (2, -2), steeper + 10	26.	y = Parabola opening downwards with vertex at (1, 3), steeper 4x + 1
27.	y = Parabola opening upwards with vertex at $(-1.5, 0)$ + 2.25	28.	y = Parabola opening upwards with vertex at (2.5, 0) + 6.25
29.	y = - x ²	30.	y = - x ²

MASTER QUESTIONS

- M1. A ball is thrown upwards from a height of 2 metres with an initial velocity of 10 m/s. The height h at time t is given by $h = -5t^2 + 10t + 2$. Find the maximum height reached by the ball.
- The maximum height is 7 metres

- M2. The profit P in pounds from selling x items is given by $P = -2x^2 + 100x 800$. Find the number of items that must be sold to maximise profit.
- 25 items must be sold to maximise profit

- M3. A rectangular garden has a perimeter of 40 metres.

 Express the area A in terms of the length x, and find the maximum possible area.
- $A = -x^2 + 20x$, maximum area is 100 m^2

- M4. The path of a projectile is given by $y = -0.1x^2 + 2x$, where y is the height in metres and x is the horizontal distance in metres. Find the maximum height reached.
- The maximum height is 10 metres

- M5. A company's revenue R in thousands of pounds is given by $R = -0.5x^2 + 30x$, where x is the number of units sold. Find the number of units that maximise revenue.
- 30 units maximise revenue

- M6. The area of a rectangle is given by A $= -x^2 + 14x$, where x is the length of one side. Find the dimensions that give the maximum area.
- M7. A bridge's arch is modelled by y
 = -0.02x² + 1.2x, where y is the
 height in metres and x is the
 horizontal distance in metres.
 Find the maximum height of the
 arch.
- M8. The cost C in pounds of producing x items is given by $C = x^2 60x + 2000$. Find the number of items that minimise the cost.
- M9. A farmer has 200 metres of fencing to enclose a rectangular field next to a river. Express the area A in terms of the length x, and find the maximum possible area.
- M10. The temperature T in degrees Celsius over a 24-hour period is modelled by $T = -0.5t^2 + 12t 10$, where t is the time in hours. Find the maximum temperature reached.