PLOTTING QUADRATIC EQUATIONS

Answer all of these questions. Remember to show your working out in all questions.

MAIN QUESTIONS

1. $y = x^2$

3. $y = x^2 + 2$

5. $y = (x - 1)^2$

7. $y = (x - 1)^2 + 2$

9. $y = 2x^2$

11. $y = 0.5x^2$

13. $y = 2(x-1)^2 + 3$

15. $y = x^2 + 4x + 4$

17. $y = x^2 + 2x + 5$

19. $y = -x^2 + 2x - 1$

21. $y = 2x^2 + 8x + 6$

23. $y = 0.5x^2 - 2x + 2$

25. $y = 3x^2 - 12x + 10$

27. $y = x^2 + 3x + 2.25$

 $y = -x^2 + 6x - 8$

 $y = -x^2$

4. $y = x^2 - 3$

6. $y = (x + 2)^2$

8. $y = (x + 3)^2 - 4$

10. $y = -3x^2$

12. $y = -0.25x^2$

14. $y = -0.5(x + 2)^2 - 1$

16. $y = x^2 - 6x + 9$

18. $y = x^2 - 4x + 1$

20. $y = -x^2 - 4x - 4$

 $y = -3x^2 + 12x - 9$

24. $y = -0.25x^2 + x - 1$

26. $y = -2x^2 + 4x + 1$

28. $y = x^2 - 5x + 6.25$

30. $y = -x^2 - 2x + 3$

MASTER QUESTIONS

- M1. A ball is thrown upwards from a height of 2 metres with an initial velocity of 10 m/s. The height h at time t is given by $h = -5t^2 + 10t + 2$. Find the maximum height reached by the ball.
- M2. The profit P in pounds from selling x items is given by $P = -2x^2 + 100x$ 800. Find the number of items that must be sold to maximise profit.
- M3. A rectangular garden has a perimeter of 40 metres. Express the area A in terms of the length x, and find the maximum possible area.
- M4. The path of a projectile is given by $y = -0.1x^2 + 2x$, where y is the height in metres and x is the horizontal distance in metres. Find the maximum height reached.
- M5. A company's revenue R in thousands of pounds is given by $R = -0.5x^2 + 30x$, where x is the number of units sold. Find the number of units that maximise revenue.
- M6. The area of a rectangle is given by $A = -x^2 + 14x$, where x is the length of one side. Find the dimensions that give the maximum area.
- M7. A bridge's arch is modelled by $y = -0.02x^2 + 1.2x$, where y is the height in metres and x is the horizontal distance in metres. Find the maximum height of the arch.
- M8. The cost C in pounds of producing x items is given by $C = x^2 60x + 2000$. Find the number of items that minimise the cost.
- M9. A farmer has 200 metres of fencing to enclose a rectangular field next to a river. Express the area A in terms of the length x, and find the maximum possible area.
- M10. The temperature T in degrees Celsius over a 24-hour period is modelled by $T = -0.5t^2 + 12t 10$, where t is the time in hours. Find the maximum temperature reached.