FRACTIONAL EQUATIONS

Answer all of these questions. Remember to show your working out in all questions.

MAIN QUESTIONS

1.
$$x/2 = 5$$
 $x = 10$ $x = 10$ $x = 12$

3.
$$5/x = 1$$
 $x = 5$ 4. $2x + 1/3 = 5/3$ $x = 2/3$

5.
$$x/5 - 2 = 3$$
 $x = 25$ 6. $4/x = 2/3$ $x = 6$

7.
$$3/(x+1) = 1$$
 $x = 2$ 8. $2x/3 - x/6 = 5$ $x = 10$

9.
$$5/(2x) = 1/4$$
 $x = 10$ 10. $(x + 3)/4 = (2x - 1)/5$ $x = 19/3$

11.
$$3/(x-2) = 4/(x+1)$$
 $x = -11$ 12. $2/(3x) + 1/6 = 1/2$ $x = 2$

15.
$$3/(2x-1) - 2/(3x+1)$$
 $x = 1$ 16. $(x+1)/x + (x-1)/$ $x = -1/3$ $(x+1) = 2$

19.
$$(x+2)/(x-1)$$
 $x = 0$ or $x = -5$ 20. $3/(x^2-4)+2/(x+2)$ $x = 5$ $(x+2) = 5/2$

MASTER QUESTIONS

- M1. A fraction becomes 1/2 when 1 is subtracted from the numerator and 2 is added to the denominator. It becomes 1/3 when 7 is subtracted from the numerator and 2 is subtracted from the denominator. Find the original fraction.
- The original fraction is 7/8

M2. The sum of a number and its reciprocal is 10/3. Find the number.

The number is 3 or 1/3

M3. A car travels 120 miles at a certain speed. If the speed were 5 mph faster, the trip would take 1 hour less. Find the original speed.

The original speed is 15 mph

M4. Two The smaller pipe takes 15 hours and the larger pipe takes 5 hours

fill a tank in 6 hours. The larger pipe alone fills it in 10 hours less than the smaller pipe alone. How long does each pipe take to fill the tank alone?

M5. A cyclist travels 20 km at a certain speed. If he had gone 2 km/h faster, he would have taken 20 minutes less. Find the original speed.

The original speed is 10 km/h