PROOF BY COUNTER EXAMPLES

Answer all of these questions. Remember to show your working out in all questions.

MAIN QUESTIONS

1.

For all integers n, $n^2 + n + 41$ is $\begin{array}{l} \text{prime} \\ n = 41 \text{ gives } 41^2 + 41 + 41 = 1763 \\ = 41 \times 43, \text{ which is composite} \end{array}$ 3.

For all integers n, 2n + 1 is prime

n = 4 gives $2 \times 4 + 1 = 9$, which is composite

5.

For all integers $n, n^2 - n + 11$ is prime

n = 11 gives 121 - 11 + 11 = 121, which is composite

7

For all integers n, n³ - n is divisible

by 3 = 2 gives 8 - 2 = 6, which is divisible by 3 (this statement is actually true, so n = 0 gives 0, which is divisible by 3)

9

For all integers n, 2ⁿ - 1 is prime

```
n = 4 gives 16 - 1 = 15, which is composite
```

2.

For all real numbers x, $x^2 > x$

x = 0.5 gives 0.25 > 0.5, which is false

4.

For all real numbers a and b, $\sqrt{(a + b)} = \sqrt{a}, \frac{1}{b} \sqrt{b}$ gives $\sqrt{2} = 2$, which is

false $\sqrt{2} = 2$, which is

6.

For all real numbers x, |x| = x

x = -1 gives |-1| = -1, which is false

8

For all real numbers x, $x^2 + 1 > 0$

x = i (complex number) gives -1 + 1 = 0, which is not greater than 0

10.

For all real numbers x, sin(x) < x

x = -1 gives $sin(-1) \approx -0.84 > -1$, which contradicts the inequality

For all integers n, $n^2 + n$ is even

n = 0 gives 0, which is even (this
statement is actually true, so n = 1
gives 2, which is even)

13

For all integers n, n! + 1 is prime

n = 4 gives 24 + 1 = 25, which is composite

15.

For all integers n, 6n + 1 is prime

n = 4 gives 25, which is composite

17

For all integers n, n^2 - 79n + 1601 is prime

n = 80 gives $6400 - 6320 + 1601 = 1681 = 41^2$, which is composite

19.

For all integers n, $2^{(2^n)} + 1$ is prime 5 gives $4294967297 = 641 \times 6700417$, which is composite 21.

For all integers n, $n^4 + 4$ is prime

n = 1 gives 5, which is prime; n = 2 gives 20, which is composite

23.

For all integers n, $n^2 + n + 17$ is

prime 17 gives $289 + 17 + 17 = 323 = 17 \times 19$, which is composite

12.

For all real numbers x, $e^x > x + 1$

x = 0 gives 1 > 1, which is false

14.

For all real numbers x, $x^3 > x^2$

x = 0.5 gives 0.125 > 0.25, which is false

16.

For all real numbers x, $ln(x^2) = 2ln(x)$

x = -1 gives ln(1) = 0, but 2ln(-1) is undefined

18.

For all real numbers x, $cos(x) \le 1$ -

 $x^2/2 = 1$ gives $cos(1) \approx 0.54 > 1 - 0.5$ = 0.5, which contradicts the inequality

20.

For all real numbers x, $(x + 1)^2 = x^2 + 1$

x = 1 gives 4 = 2, which is false

22.

For all real numbers x, $\arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$ x = -1 gives $-\pi/4 + -\pi/4 = -\pi/2 \neq$

 $\pi/2$

24.

For all real numbers x, x/(x + 1) < 1

x = -0.5 gives 1 > 1, which is false

25.

For all integers n, 10n + 1 is prime

n = 3 gives 31, which is prime; n = 6 gives 61, which is prime; n = 10 gives 101, which is prime; n = 12 gives $121 = 11^2$, which is composite

27.

For all integers n, n^5 - n is divisible by $n^5 = 2$ gives 32 - 2 = 30, which is divisible by 5 (this statement is actually true, so n = 0 gives 0, which is divisible by 5)

29.

For all integers n, $n^2 + 21n + 1$ is prime 1 gives 23, which is prime; n = 21 gives 441 + 441 + 1 = 883, which is prime; n = 22 gives 484 + 462 + 1 = 947, which is prime; n = 28 gives 784 + 588 + 1 = 1373, which is prime; n = 41 gives $1681 + 861 + 1 = 2543 = 2543 \div 2543 =$

26.

For all real numbers x, $\sqrt{(x^2)} = x$

x = -1 gives 1 = -1, which is false

28.

For all real numbers x, sin(2x) = 2sin(x)

 $x = \pi/4$ gives $sin(\pi/2) = 1 \neq$ $2sin(\pi/4) = \sqrt{2}$

30.

For all real numbers x, $e^{(-x)} = 1/e^{x}$

x = 0 gives 1 = 1, which is true; x = 1 gives 1/e = 1/e, which is true; this statement is actually true for all real x

MASTER QUESTIONS

M1.

Every continuous function is differentiable

f(x) = |x| is continuous at x = 0 but not differentiable there

```
M2.
```

If a function is bounded, it must attain its maximum and minimum values

f(x) = x on (0,1) is bounded but does not attain its maximum or minimum values

M3.

Every convergent sequence of real numbers is monotonic

The sequence (-1)^n/n converges to 0 but is not monotonic

M4.

If a series converges, then its terms must approach zero monotonically

The alternating harmonic series $\Sigma(-1)^{n+1}/n$ converges but its terms do not decrease monotonically in absolute value

M5.

Every subgroup of a cyclic group is cyclic

This statement is actually true for all cyclic groups

M6.

If two matrices commute, they must be diagonalisable

The matrices [[1,1],[0,1]] and [[1,0],[0,1]] commute, but the first is not diagonalisable

M7.

Every bounded sequence has a convergent subsequence

This statement is actually true (Bolzano-Weierstrass theorem)

M8.

If a function has a local maximum at a point, then its derivative must be zero at that point |x| = |x| has a local minimum at x = 0 but the derivative does not exist there

M9.

Every infinite set has the same cardinality

The set of real numbers has greater cardinality than the set of natural numbers

M10.

If a topological space is Hausdorff, then every sequence has at most one limit point. Statement is actually true for Hausdorff spaces