## PROOF BY COUNTER EXAMPLES

Answer all of these questions. Remember to show your working out in all questions.

## MAIN QUESTIONS

1.

For all integers n,  $n^2 + n + 41$  is prime

For all integers n, 2n + 1 is prime 5.

For all integers n,  $n^2$  - n + 11 is prime 7.

For all integers n,  $n^3$  - n is divisible by 3

For all integers n,  $2^n - 1$  is prime 11.

For all integers n,  $n^2 + n$  is even 13.

For all integers n, n! + 1 is prime 15.

For all integers n, 6n + 1 is prime 17.

For all integers n,  $n^2$  - 79n + 1601 is prime

For all integers n,  $2^{(2^n)} + 1$  is the strime

For all integers n,  $n^4 + 4$  is prime

2.

For all real numbers x,  $x^2 > x$ 4.

For all real numbers a and b,  $\sqrt{(a + b)} = \sqrt{a} + \sqrt{b}$ 

For all real numbers x, |x| = x

For all real numbers x,  $x^2 + 1 > 0$ 10.

For all real numbers x, sin(x) < x12.

For all real numbers x,  $e^x > x + 1$ 14.

For all real numbers x,  $x^3 > x^2$ 16.

For all real numbers x,  $ln(x^2) = 2ln(x)$ 18.

For all real numbers x,  $cos(x) \le 1$  - 2f/2

For all real numbers x,  $(x + 1)^2 = x^2 + 2$ .

23.

For all integers n,  $n^2 + n + 17$  is firime

For all integers n, 10n + 1 is prime 27.

For all integers n, n<sup>5</sup> - n is divisible by 5

For all integers  $n, n^2 + 2ln + 1$  is

MASTER QUESTIONS

24.

For all real numbers x, x/(x + 1) < 126.

For all real numbers x,  $\sqrt{(x^2)} = x$ 28.

For all real numbers x, sin(2x) = 2sin(x)

For all real numbers x,  $e^{(-x)} = 1/e^{x}$ 



M1.

Every continuous function is differentiable

M2.

If a function is bounded, it must attain its maximum and minimum values M3.

Every convergent sequence of real numbers is monotonic

M4.

If a series converges, then its terms must approach zero monotonically M5.

Every subgroup of a cyclic group is cyclic

M6.

If two matrices commute, they must be diagonalisable

M7.

Every bounded sequence has a convergent subsequence

## M8.

If a function has a local maximum at a point, then its derivative must be zero at that point

Every infinite set has the same cardinality

## M10.

If a topological space is Hausdorff, then every sequence has at most one limit point