TEST

Answer all of these questions. Remember to show your working out in all questions.

MAIN QUESTIONS

1.

Differentiate $y = 3x^2 + 2x - 5$

$$dy/dx = 6x + 2$$

3.

Differentiate y = (2x + 1)(x - 3)

$$dy/dx = 4x - 5$$

5.

Differentiate $y = \sin(2x) + \cos(3x)$

$$dy/dx = 2\cos(2x) - 3\sin(3x)$$

7.

Differentiate $y = x^2 e^{\Lambda}x$

$$dy/dx = e^{x}(x^{2} + 2x)$$

9

Differentiate $y = \tan(3x) + \sec(2x)$

$$dy/dx = 3sec^{2}(3x) + 2sec(2x)tan(2x)$$

2.

Find the derivative of $f(x) = 4x^3 - 2x^2$

$$\mathbf{T} = \mathbf{T}(\mathbf{x}) = 12\mathbf{x}^2 - 4\mathbf{x} + 1$$

Find f'(x) when $f(x) = \sqrt{x + 1/x}$

$$f'(x) = 1/(2\sqrt{x}) - 1/x^2$$

Find the derivative of $f(x) = e^{(3x)} +$

$$\ln(2x) = 3e^{(3x)} + 1/x$$

8.

Find f'(x) when $f(x) = (x^2 + 1)/(x - 2)$

$$f'(x) = (x^2 - 4x - 1)/(x - 2)^2$$

10.

Find the derivative of $f(x) = \ln(x^3 + 2x)$

$$f'(x) = (3x^2 + 2)/(x^3 + 2x)$$

MASTER QUESTIONS

M1.

A ball is thrown vertically upwards with its height given by $h(t) = 20t - 5t^2$ metres. Find the maximum height reached and when it occurs. Maximum height of 20 metres occurs after 2 seconds

M2.

The volume of a sphere is increasing at a rate of $10 \text{ cm}^3/\text{s}$. Find the rate of increase of the radius/when the radius is 5 cm.

M3.

A rectangular field is to be enclosed with 100 metres of fencing, with one side against a river (needing no fence). Find the dimensions that maximise the area.

M4.

The cost C of producing x items is given by $C(x) = 0.01x^2 + 20x + 1000$. Find the number of items that minimises the average cost per item.

M5.

A particle moves along a straight line with position $s(t) = t^3 - 6t^2 + 9t$ metres. Find when the particle is at rest and determine if these are points of maximum or minimum velocity.