

The point (0,0) is located at the origin of the coordinate plane.

The point (0,0) is located at the origin of the coordinate plane.

True. The origin is defined as the intersection point of the x-axis and y-axis, with coordinates (0,0).

The point (3, -2) lies in the fourth quadrant.

The point (3, -2) lies in the fourth quadrant.

True. The fourth quadrant has positive xcoordinates and negative y-coordinates.

The x-coordinate of a point on the y-axis is always 0.

The x-coordinate of a point on the y-axis is always 0.

True. Points on the y-axis have the form (0, y), so their x-coordinate is always 0.

The equation y = 2x + 3 has a yintercept at (0, 3).

The equation y = 2x + 3 has a y-intercept at (0, 3).

True. The y-intercept occurs when x=0. Substituting x=0 gives y=3, so the intercept is (0,3).

The slope of the line 2y = 4x - 6 is 4.

False. Solving for y: y = 2x - 3. The slope is the coefficient of x, which is 2, not 4.

The line x = 5 is a horizontal line.

The line x = 5 is a horizontal line.

False. x = 5 represents a vertical line where all points have x-coordinate 5, not horizontal.

Two lines with the same slope are parallel.

True. Lines with identical slopes never intersect and are parallel.

The point (1,1) lies on the line y = 2x.

False. When x=1, y=2(1)=2 \neq 1. Thus, (1,1) is not on the line.

The x-intercept of the line 3x + 2y = 6 is (2,0).

True. Set $y=0: 3x = 6 \rightarrow x=2$. The x-intercept is (2,0).

The y-intercept of the line 4x - y = 8 is (0,8).

False. Set $x=0: -y = 8 \rightarrow y=-8$. The y-intercept is (0,-8), not (0,8).

The slope of a horizontal line is 0.

The slope of a horizontal line is 0.

True. Horizontal lines have no vertical change, so slope (rise/run) is 0.

The slope of a vertical line is 0.

The slope of a vertical line is 0.

False. Vertical lines have undefined slope because their run is 0, causing division by zero.

In the equation Ax + By = C, if A=0, then the line is horizontal.

In the equation Ax + By = C, if A=0, then the line is horizontal.

True. When A=0, the equation becomes By = C, which simplifies to y = k (constant), a horizontal line.

The distance between the points (0,0) and (3,4) is 7 units.

The distance between the points (0,0) and (3,4) is 7 units.

False. Distance = $\sqrt{[(3-0)^2 + (4-0)^2]} = \sqrt{(9+16)} = \sqrt{25} = 5$ units, not 7.

The point (-3, 4) is in the third quadrant.

The point (-3, 4) is in the third quadrant.

False. The third quadrant requires both coordinates negative. (-3,4) has negative x and positive y, placing it in the second quadrant.

The line y = -5x + 2 has a negative slope.

The line y = -5x + 2 has a negative slope.

True. The slope is -5, which is negative.

The lines y = 3x + 1 and y = 3x - 4 are perpendicular.

The lines y = 3x + 1 and y = 3x - 4 are perpendicular.

False. Both have slope 3. Perpendicular lines have slopes that are negative reciprocals (e.g., 3 and -1/3).

The line y = 4 is a horizontal line.

The line y = 4 is a horizontal line.

True. y = 4 describes a horizontal line where all points have y-coordinate 4.

The point (0,5) lies on the x-axis.

The point (0,5) lies on the x-axis.

False. Points on the x-axis have y=0. (0,5) has x=0 and y=5, so it lies on the y-axis.

The equation y = 5 represents a line that passes through the origin.

The equation y = 5 represents a line that passes through the origin.

False. At the origin (0,0), $y=5 \neq 0$. The line y=5 is horizontal and does not pass through (0,0).